Name: \qquad Date:
Solve each expression using the correct order of operations.
$10 \div\left(3^{2}-2^{3}+4\right) \times 7$
$\left(10+5^{2}\right) \times\left(9-3^{2}\right) \div 2$
$7 \div(10-6+3) \times\left(9^{2}+8\right)$
$6^{2} \div\left(8+4-2^{3}\right) \times 7$
$2^{3}-6 \times((4+9) \div(8+5))$
$9+6-10^{2} \div\left(2^{2} \times 5\right)$

Order of Operations (J)

Name: \qquad Date:
Solve each expression using the correct order of operations.

$$
\begin{aligned}
& 10 \div\left(\underline{3^{2}}-2^{3}+4\right) \times 7 \\
& =10 \div\left(9-\underline{2^{3}}+4\right) \times 7 \\
& =10 \div(\underline{9-8}+4) \times 7 \\
& =10 \div(\underline{1+4}) \times 7 \\
& =\underline{10 \div 5 \times 7} \\
& =\underline{2 \times 7} \\
& =14
\end{aligned}
$$

$$
\left(10+\underline{5^{2}}\right) \times\left(9-3^{2}\right) \div 2
$$

$$
=(\underline{10+25}) \times\left(9-3^{2}\right) \div 2
$$

$$
=35 \times\left(9-\underline{3^{2}}\right) \div 2
$$

$$
=35 \times(\underline{9-9}) \div 2
$$

$$
=\underline{35 \times 0} \div 2
$$

$$
=\underline{0 \div 2}
$$

$$
=0
$$

$7 \div(\underline{10-6}+3) \times\left(9^{2}+8\right)$
$=7 \div(\underline{4+3}) \times\left(9^{2}+8\right)$
$=7 \div 7 \times\left(\underline{9^{2}}+8\right)$
$=7 \div 7 \times(\underline{81+8})$
$=\underline{7 \div 7} \times 89$
$=1 \times 89$
$=89$

$$
\begin{aligned}
& 6^{2} \div\left(8+4-\underline{2^{3}}\right) \times 7 \\
& =6^{2} \div(\underline{8+4}-8) \times 7 \\
& =6^{2} \div(\underline{12-8}) \times 7 \\
& =\underline{6^{2}} \div 4 \times 7 \\
& =\underline{36} \div 4 \times 7 \\
& =\underline{9 \times 7} \\
& =63
\end{aligned}
$$

$$
\begin{aligned}
& 2^{3}-6 \times((4+9) \div(8+5)) \\
& =2^{3}-6 \times(13 \div(\underline{8+5})) \\
& =2^{3}-6 \times(13 \div 13) \\
& =\underline{2^{3}}-6 \times 1 \\
& =8-6 \times 1 \\
& =\underline{8-6} \\
& =2
\end{aligned}
$$

$$
\begin{aligned}
& 9+6-10^{2} \div\left(\underline{2^{2}} \times 5\right) \\
& =9+6-10^{2} \div(\underline{4 \times 5}) \\
& =9+6-\underline{10^{2}} \div 20 \\
& =9+6-\underline{100} \div 20 \\
& =\underline{9+6}-5 \\
& =\underline{15-5} \\
& =\underline{10}
\end{aligned}
$$

